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1 Abstract

1.1 Objective ¶
For years, detecting components from an image has been a difficult problem. Harsh and I decided to tackle
the problem of detecting objects in a chess board image. The goal here is to convert a video of a chess
game into moves. This means being able to detect components within a single frame and being able to
differentiate between two frames. This can have a direct impact on the chess community where important
games can be automatically converted to moves. In chess tournaments, players are expected to keep track
of all moves in chess notation by hand and that is used to review past games and to settle disagreements.
Our project, when complete, will be able to accurately detect piece moves live if the video starts at the
beginning of the game. If the video starts at a random position, our code will make guesses about what each
piece is initially and then improve accuracy of previously recorded moves when future moves take place
based on standard chess rules. Of course, although we worked specifically on the chess problem, like with
most computer vision problems, the applications can be expanded to other uses with some modifications.

1.2 Summary
We started off by splitting the problem into parts.

1. Removing backgrounds
2. Detecting squares on a board
3. Detecting black and white squares
4. Detecting occupied and unoccupied squares
5. Detecting black and white pieces
6. Determining type of piece
7. Comparing two images to find changes
8. Figuring out the moves between images
9. Improving on previous guesses of types of pieces
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2 Background

2.1 Previous Work
There has been limited work specifically for this problem. The paper that started us off with automating
chess move recording was from the Sri Lankan Journal of Physics that Harsh found [1]. The methodology
compares two images frames, and determines the changes in brightness in certain areas. It works quite well
but it is limited to certain boards and only works when taking in two frames. It is not very practical but it can
differentiate images. Of course, apart from this, there has been a lot of other work in image processing.

2.2 Canny Edge Detector
Canny detectors, developed by John Canny, stated simply, reduce unnecessary noise within an image and
simplify to the extent that only the edges are seen. It smoothens an image using Gaussian convolution and
further processes the image to fill in gaps and simplify the finer details with thresholds [2]. Canny detectors
tend to be very popular as they try to achieve low error rates, good localization, and minimal response.

The Canny detector is particularly useful in our project to initially detect the placement of the board and the
location of squares.

2.3 Hough Line Transform
Hough transformation algorithms are used to detect particular shapes within an image. The variation that we
are most interested in is a Hough Line transformation. The Hough Line transformation works around image
noise and fills in gaps between edges based on specified parameters.

It uses polar coordinates and plots the family of lines going through each point. The more the number of
plots that intersect at a particular point, the more the number of points on the line there are [4]. In more
complex terms, it works by "quantizing the Hough parameter space into finite intervals or accumulator cells"
[3]. Parameters can be used to set a minimum number of intersections required to categorize an edge as a
line. Hough Line Transform is usually in conjunction with a Canny Edge Detector.

2.4 Convolutional Neural Network
Computer vision is heavily dependent upon convolutional neural networks. CNNs assume that the inputs are
images and so, can make appropirate modifications for efficiency. Regular neural networks simply do not
scale to the size of images that we would want to analyze. The number of weights would quickly become
excessive. CNNs arrange neurons in 3 dimensions (width, height, depth) and and stack layers that can each
be convolutional layers, ReLU, pooling layers, or fully-connected layers [5].



3 Methodology

3.1 The Dataset
For any neural network, we first need a data set. We had a small list of chess board images.

With this, we needed to create data that could be inputted into the neural network. That meant using the
Canny Edge detection along with Hough Line Transformations. Setting the Hough Line parameters such that
nearby lines would be combined, we extended all the outputted values to cover the entire image. That is, if a
short vertical edge was found at a particular x value of k, we would extend the edge using the equation y=k.
In that manner, all edges on a single row or column could be combined.



In [ ]: import cv2
import numpy as np
import math

filenum = "15"

img = cv2.imread("Picture 0"+filenum+".jpg")
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(gray, 80, 120)

lines = cv2.HoughLines(edges,1,math.pi/90,130);

xlines = []
ylines = []

for line in lines:
 for rho,theta in line:
      a = np.cos(theta)
      b = np.sin(theta)
      x0 = a*rho
      y0 = b*rho
      x1 = int(x0 + 1000*(-b))
      y1 = int(y0 + 1000*(a))
      x2 = int(x0 - 1000*(-b))
      y2 = int(y0 - 1000*(a))
  if abs(x1 - x2) < 2:
   if len(xlines) == 0 or (abs(x1 - xlines[-1]) > 
0):
    xlines.append((x1+x2)/2)
    ymin = y1
    ymax = y2
   else:
    continue
  elif abs(y1 - y2) < 2:
   if len(ylines) == 0 or (abs(y1 - ylines[-1]) > 
0):
    ylines.append((y1+y2)/2)
    xmin = x1
    xmax = x2
   else:
    continue
     



This is still messy. So, we would need to then further clean up the lines found. We combine lines based on
location.



In [ ]: finalx = []
finaly = []

imgsquares = []

ymin = 0
ymax = 0
xmin = 0
xmax = 0

xprev = -50
yprev = -50
xlines.sort()
ylines.sort()

avgx = (xlines[-1] - xlines[0])/9
avgy = (ylines[-1] - ylines[0])/9

for x1 in xlines:
 if abs(x1 - xprev) > avgx:
  finalx.append(x1)
  xprev = x1
for y1 in ylines:
 if abs(y1 - yprev) > avgy:
  finaly.append(y1)
  yprev = y1

print finalx
print finaly

cv2.imwrite("img2.jpg",img)



With this done, we next move to extract the squares and save each one separately.

In [ ]: xprev = finalx.pop(0)
yfirst = finaly.pop(0)
n=0
for x1 in finalx:
 yprev = yfirst
 for y1 in finaly:
  print xprev, x1, yprev, y1
  imgsquares.append(img[xprev:x1, yprev:y1])
  cv2.imwrite(filenum + " " +str(n)+".jpg",img[yprev:y1, 
xprev:x1])
  n+=1
  yprev = y1
 xprev = x1

print len(imgsquares)



We run additional scripts to get each image to be the right size (32x32) and color. This needs to be done
properly since CNNs expect all images to be the same size. We put these images into the appropriate
directories based on whether they are occupied or not, black squares or white squares, and white piece
occupied or black piece occupied.

3.2 Comparing Images
To differentiate images, we can subtract the files and remove noise. OpenCV has its own image subtraction
which takes care of noise and simply shows difference. Using this, we can separately identify where the
images have disappeared from and where they have moved to.



In [ ]: import cv2
import numpy as np
import math

filenum = "15"

img = cv2.imread("Picture 010.jpg")
img2 = cv2.imread("Picture 011.jpg")
#gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#edges = cv2.Canny(gray, 80, 120) #80,120 
params = cv2.SimpleBlobDetector_Params()

# Change thresholds
params.minThreshold = 0
params.maxThreshold = 256

# Filter by Area
params.filterByArea = True
params.minArea = 30

# Filter by Circularity
params.filterByCircularity = False
params.minCircularity = 0.1

# Filter by Convexity
params.filterByConvexity = False
params.minConvexity = 0.5

# Filter by Inertia
params.filterByInertia = False
params.minInertiaRatio = 0.5

detector = cv2.SimpleBlobDetector_create(params)

#img3 = img2 - img - too much noise
img3 = cv2.subtract(img, img2)
img4 = cv2.subtract(img2, img)
img3 = img3+img4
keypoints = detector.detect(img3)
im_with_keypoints = cv2.drawKeypoints(img3, keypoints, np.array([]), (
0,0,255))

print keypoints

cv2.imwrite("imgdiff2.jpg",im_with_keypoints)



The locations of the blobs can then be used to determine the squares on the board. One way is the OpenCV
blob detector but I have found much more success simply aggregating the pixel values in each expected
square location.

3.3 Convolutional Neural Network
Modifying MNIST code found online [6], we trained a CNN in Keras.



In [ ]: model = Sequential()

model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1],
                        border_mode='valid',
                        input_shape=input_shape))
model.add(Activation('relu'))
model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1]))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=pool_size))

model.add(Flatten())
model.add(Dense(128))
model.add(Activation('relu'))
model.add(Dense(nb_classes))
model.add(Activation('softmax'))

model.compile(loss='categorical_crossentropy',
              optimizer='adadelta',
              metrics=['accuracy'])

model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch,
          verbose=1, validation_data=(X_test, Y_test))
score = model.evaluate(X_test, Y_test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])

4 Results

4.1 Data Set
So far, we have been able to:

Take in frames
Determine the location of the board
Determine square locations
Create 64 separate images, one for each square on the board
Modify the data set to match our needs

4.2 Comparing Images
Comparing images, we can determine the location of the missing piece and the new location.

4.3 Convolutional Net



The network was trained to recognize the categories created with our data set. Trained on 665 samples and
validated on 167 samples, here are some of our results. These categories describe whether a square is
black/white, unoccupied/occupied white/occupied black.



The network has worked really well with an accuracy of 0.958083832692.

5 Future Work



5.1 Image Comparison
We need to integrate the two parts of our project - single frame image recognition and image comparison.

We need to add to the image comparison so that it feeds back into our existing information on pieces. If
what we think is a rook moves like a knight, we need to change our data. Now, we are able to get data on
moves. For next steps, we need to use this information to improve our image processing guesses.

5.2 CNN
We can change the layers to get more optimal results.
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