
Final Report
Author: Vishnu Thiagarajan, vt5222 (Working with Harsh Goyal)

Date: November 28, 2016

1 Abstract

1.1 Objective
The goal to be able to convert a video of a chess game into moves. This work can affect chess tournaments
around the world. Players are typically expected to keep track of moves in chess notation by hand during
the game, for their own records and for disputes. With this project, ideally, the video can be converted to
chess notation in realtime. This text can then be easily transmitted anywhere over the internet and the board
can be recreated.

This means that:

Players do not need to write down every move
Chess games can be streamed with minimal bandwith. Parents standing outside can watch the
game as it happens.
Footage of old games can be quickly converted to a much smaller text format

To achieve this goal, we must be able to detect components within a single frame and be able to
differentiate between two frames. Our project must be able to accurately detect piece moves if the video
starts at the beginning of the game. If the video starts at a random position, our code must make guesses
about what each piece is initially and then improve accuracy of previously recorded moves when future
moves take place based on standard chess rules. Of course, although we worked specifically on the chess
problem, like with most computer vision problems, the applications can be expanded to other uses with
some modifications.

1.2 Summary
When starting the project, we listed these as the subtasks.

1. Removing backgrounds
2. Detecting squares on a board
3. Detecting black and white squares
4. Detecting occupied and unoccupied squares
5. Detecting black and white pieces
6. Determining the type of piece
7. Comparing two images to find changes
8. Figuring out the moves between images
9. Improving on previous guesses of types of pieces

By the time of the midterm presentaion, we had completed tasks 1-5 and we had started task 7. For the final
presentation, we have been working hard to finish all 9 subtasks. However, that meant having to update a lot
of our previous work. Our previous data set consisted of around 800 images. Our new data set has over
10000 images. We have had to change a lot of our previous square detection code to be more expansive.

2 Background

2.1 Previous Work
As mentioned in our past report, the main work on this problem is from the Sri Lankan Journal of Physics [1].
The methodology compares two images frames, and determines the changes in brightness in certain areas.
It works quite well but it is very limited. It does not use any machine learning and so, it probably only works
with that particular chess board. We have been able to achieve the same results that he had and build quite
a bit more on top of it.

2.2 Colorspace Filtering
We use two primary techniques to pre-process an image. The first is a Canny detector that can reduce
unnecessary noise and simplify an image. It smoothens an image using Gaussian convolution and further
processes the image to fill in gaps and simplify the finer details with thresholds [2].

The other technique that we have started using more recently is an HSV filter. By removing pixels with low
saturation or low value, we are able to filter out a lot of the noise in an image. Although this is not the original
intent of HSV filtration, this technique works well for us. This is especially useful when comparing two
images. Typically, changes in lighting can cause consecutive images to look slightly different. Using
Gaussian convolution, HSV filters and image subtraction together, we are able to account for noise caused
by small changes like that.

2.3 Probabilistic Hough Transform
Hough transformation algorithms are used to detect particular shapes within an image. We use both Hough
Line and Hough Circle transformations. For the midterm, we were using standard line transformations but for
the final, we have switched to using a Probabilistic Hough Transformation. This is supposed to be more
optimized as it only views a random subset of points required for detection [7]. We found the result of the
probailistic detection to be more complicated initially much better after some post-processing. We use
probabilistic hough line transforms and hough circles transforms.

2.4 Convolutional Neural Network
Computer vision is heavily dependent upon convolutional neural networks. CNNs assume that the inputs are
images and so, can make appropirate modifications for efficiency. Regular neural networks simply do not
scale to the size of images that we would want to analyze. The number of weights would quickly become
excessive. CNNs arrange neurons in 3 dimensions (width, height, depth) and and stack layers that can each
be convolutional layers, ReLU, pooling layers, or fully-connected layers [5].

3 Methodology

3.1 The Dataset
One of the biggest issues that we faced was creating a data set that would be large enough for us to train
the neural network on and of good enough quality that a human (and therefore, the computer) would be able
to recognize the pieces. The dataset that we used for the midterm dataset was both small and of bad
quality. Without using positional information, even a human would have a hard time recognizing some of the
pieces, especially when a black piece was on a black square. So, we needed to create our own data set.

Due to the time crunch, we decided to use a 3D chess app to get the necessary pictures. I took pictures
after every move of a 100-move chess game. Of course, we would need to add variability to this set of
images to imitate real-world images. So, we used a number of textures and some simple rotations.

With this, we needed to create data that could be inputted into the neural network. That meant using the
Canny Edge detection and Hough Line Transformations.

In []: import cv2
import numpy as np
import math
import sys

filenum = sys.argv[1]

img = cv2.imread(filenum+".png")
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(gray, 80, 120)

xlines = []
ylines = []

finalx = []
finaly = []

imgsquares = []

ymin = 0
ymax = 0
xmin = 0
xmax = 0

lines = cv2.HoughLinesP(edges,rho=1,theta=np.pi/180,threshold=80,minLi
neLength=500,maxLineGap=500)

for line in lines:
 for x1,y1,x2,y2 in line:
 if abs(x1 - x2) < 40:
 xlines.append((x1+x2)/2)
 ymin = y1
 ymax = y2
 cv2.line(img,(x1,y1),(x2,y2),(0,255,0),2)
 elif abs(y1 - y2) < 1 and y1 > 100:
 ylines.append((y1+y2)/2)
 xmin = x1
 xmax = x2
 cv2.line(img,(x1,y1),(x2,y2),(255,0,0),2)

This is still messy. So, we would need to then further clean up the lines found. We combine lines based on
location. This bit of code has not significantly changed since the midterm report. Although not drawn here
cleanly, the lines are here are detected with close to a perfect accuracy on similar images. We save the x and
y values of the horizontal and vertical lines. This will work with both the new data set and the old data set.

In []: finalx = []
finaly = []

imgsquares = []

ymin = 0
ymax = 0
xmin = 0
xmax = 0

xprev = -50
yprev = -50
xlines.sort()
ylines.sort()

avgx = (xlines[-1] - xlines[0])/10
avgy = (ylines[-1] - ylines[0])/10

for x1 in xlines:
 if abs(x1 - xprev) > avgx:
 cv2.line(img,(x1,ymin),(x1,ymax),(0,0,255),2)
 finalx.append(x1)
 xprev = x1
for y1 in ylines:
 if abs(y1 - yprev) > avgy:
 cv2.line(img,(xmin,y1),(xmax,y1),(0,0,255),2)
 finaly.append(y1)
 yprev = y1

print finalx
print finaly

cv2.imwrite("after.jpg",img)

With this done, we next move to extract the squares and save each one separately.

In []: xprev = finalx.pop(0)
yfirst = finaly.pop(0)
n=0
for x1 in finalx:
 yprev = yfirst
 for y1 in finaly:
 imgsquares.append(img[xprev:x1, yprev:y1])
 if yprev < 10 or yprev > 200:
 cv2.imwrite(filenum + " " +str(n)+".jpg",img[y
prev:y1, xprev:x1])
 else:
 cv2.imwrite(filenum + " " +str(n)+".jpg",img[y
prev-10:y1, xprev:x1])
 n+=1
 yprev = y1
 xprev = x1

print len(imgsquares)

We run additional scripts to get each image to be the right size (32x32) and color. This needs to be done
properly since CNNs expect all images to be the same size. We then manually categorize each image based
on square color, piece color, and piece type. This took quite a long time since our new data set ended up
being over 10000 images.

In []: import cv2
import numpy as np
import math
import glob, os
import sys

filenum = sys.argv[1]
size = 32, 32
print os.getcwd()
count = 0
os.chdir("/Users/Vishnu/Desktop/NewDataSet/Black_Square/"+filenum)
for file in glob.glob("*.jpg"):
 count += 1
 img = cv2.imread(file)
 img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
 img = cv2.resize(img, (32, 32))
 cv2.imwrite(file,img)
print str(count) + " files changed"

3.2 Comparing Images
The next step is to compare two images to figure out what squares have changed. To differentiate images,
we can subtract the image matrices and remove noise. OpenCV has its own image subtraction which takes
care of some of the noise. We then apply HSV filters and blurs to remove the rest of the noise. Using this, we
can separately identify where the images have disappeared from and where they have moved to.

In []: import cv2
import numpy as np
import math

filenum = sys.argv[2]
img2 = cv2.imread(filenum+".png")

img3 = cv2.subtract(img, img2)
img4 = cv2.subtract(img2, img)
frame = img3
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
lower_blue = np.array([50,50,50])
upper_blue = np.array([180,255,255])

Use HSV when needed
frame = cv2.inRange(hsv, lower_blue, upper_blue)

mask = cv2.cvtColor (frame, cv2.COLOR_BGR2GRAY)

img = cv2.medianBlur(mask,5)

This resulting image can have varying amounts of noise depending on how much has changed between the
two images. Additionally, some changes are much more obvious than others. For example, a white piece
moving to or from a white square is very obvious. However, a black piece leaving a black square is not as
obvious. Because of this, the thresholds must be adjusted to match each case. To do this, we have added a
lot of cases in our code.

In []: returntext = ""
xmapping = ["0","A","B","C","D","E","F","G","H"]

#try together first
frame = img3 + img4
mask = cv2.cvtColor (frame, cv2.COLOR_BGR2GRAY)
img = cv2.medianBlur(mask,5)
circles = cv2.HoughCircles(mask,cv2.HOUGH_GRADIENT,1,50,param1=50,para
m2=50,minRadius=3,maxRadius=0)
if circles is None or len(circles[0]) < 2:
 circles = cv2.HoughCircles(mask,cv2.HOUGH_GRADIENT,1,50,param1
=30,param2=50,minRadius=3,maxRadius=0)
if circles is None or len(circles[0]) < 2:
 circles = cv2.HoughCircles(mask,cv2.HOUGH_GRADIENT,1,50,param1
=30,param2=30,minRadius=3,maxRadius=0)
if circles is not None and len(circles[0]) == 2:
 circles = np.uint16(np.around(circles))
 ran = circles[0,:]
 for i in ran:
 xval = i[0]
 yval = i[1]
 xindex = 0
 yindex = 0
 for x1 in finalx:
 if xval < x1:
 break;
 else:
 xindex += 1
 for y1 in finaly:
 if yval < y1:
 break;
 else:
 yindex += 1
 yindex = 8 - yindex
 print "moved from/to ", xmapping[xindex],yindex
 returntext += xmapping[xindex] + str(yindex) + " "
 cv2.circle(img3,(i[0],i[1]),i[2],(0,255,0),2)
 cv2.circle(img3,(i[0],i[1]),2,(0,0,255),3)
 returntext += "\n"
 print "final returntext: " + returntext
 with open("test.txt", "a") as myfile:
 myfile.write(returntext)
 sys.exit()

If the squares cannot be found together, the search can be run separately for each square. We run hough
transforms with varying thresholds until we get the results that we seek.

As a last resort, the pixel values can be added and the the location can be found mathmatically. However,
while this method can be very accurate, it doesn't work when more than one square has changed in the
input image. Additionally, this is computationally expensive in its current un-optimized state. So, whenever
possible, we use hough transformations.

In []: frame = img3
returnset = set([])
mask = cv2.cvtColor (frame, cv2.COLOR_BGR2GRAY)
img = cv2.medianBlur(mask,5)
circles = cv2.HoughCircles(mask,cv2.HOUGH_GRADIENT,1,50,param1=50,para
m2=50,minRadius=3,maxRadius=0)
if circles is None:
 circles = cv2.HoughCircles(mask,cv2.HOUGH_GRADIENT,1,50,param1
=30,param2=50,minRadius=3,maxRadius=0)
if circles is None:
 circles = cv2.HoughCircles(mask,cv2.HOUGH_GRADIENT,1,50,param1
=30,param2=30,minRadius=3,maxRadius=0)
returnset = set([])

ranfound = False
if circles is None:
 mask = cv2.cvtColor (frame, cv2.COLOR_BGR2GRAY)
 cv2.imwrite("canny.jpg",mask)
 xpixels = 0
 ypixels = 0
 totalnum = 0
 for i in range(len(mask)):
 for j in range(len(mask[i])):
 if mask[i][j].any():
 xpixels += i
 ypixels += j
 totalnum += 1
 if totalnum > 0:
 circles = [[ypixels/totalnum, xpixels/totalnum, totaln
um]]
 ran = circles
 ranfound = True
 else:
 circles = None

if circles is None:
 print "trying canny on the inverse of other image"
 frame = 255-img4
 hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
 mask = cv2.inRange(hsv, lower_blue, upper_blue)
 mask = cv2.cvtColor (frame, cv2.COLOR_BGR2GRAY)
 img = cv2.medianBlur(mask,5)
 circles = cv2.HoughCircles(mask,cv2.HOUGH_GRADIENT,1,50,param1

=30,param2=50,minRadius=3,maxRadius=0)

if not ranfound:
 circles = np.uint16(np.around(circles))
 print circles
 ran = circles[0,:]

for i in ran:
 xval = i[0]
 yval = i[1]
 xindex = 0
 yindex = 0
 for x1 in finalx:
 if xval < x1:
 break;
 else:
 xindex += 1
 for y1 in finaly:
 if yval < y1:
 break;
 else:
 yindex += 1
 yindex = 8 - yindex
 print "moved to ", xmapping[xindex],yindex
 returnset.add(xmapping[xindex] + str(yindex))
 cv2.circle(img3,(i[0],i[1]),i[2],(0,255,0),2)
 cv2.circle(img3,(i[0],i[1]),2,(0,0,255),3)

Repeat for second image

Write changes to file
for elem in returnset:
 returntext += elem + " "
returntext += "\n"
print "final returntext: " + returntext

with open("test.txt", "a") as myfile:
 myfile.write(returntext)

Running this code gave us the following result for an input of 114 frames. These frames are images taken
before and after every move. In each line, we can see the changed squares for that move. The results have
had perfect accuracy in all of our tests.

D2 D4 D7 D5 E2 E4 E6 E7 B1 C3 F8 B4 C1 F4 G5 G7 F4 E5 F7 F6 G3 E5 E4 D5 F1 C4 B8 C6 H5 D1 E8 E7
D5 D4 C3 B4 C3 B2 D5 E6 D5 C4 D5 D8 C7 G3 D5 D7 G3 C7 D7 G4 H5 G4 G4 C8 B1 A1 B7 B6 F3 F2 G4
E6 E4 F3 A2 E6 D1 B1 E8 E7 D1 D6 C6 E5 F6 D6 F6 G8 E5 G3 F8 H8 F3 G1 E4 F6 F1 H1 C8 A8 D6 E5 D6
E4 F3 G5 F8 F1 F1 E1 H7 H6 E6 G5 E6 A2 G2 G4 C3 C8 F1 F2 G4 E6 G2 F2 A7 A5 G1 G2 A5 G2 G1 A4 B5
B6 H3 H2 C2 C3 G2 G3 B5 B4 G4 G3 C2 F2 H5 G4 F5 D6 H3 H4 H2 F2 H5 G4 H4 F5 G4 G3 H4 G2 H2 G3
E3 G2 H2 G3 D7 E8 G3 F2 B3 B4 E2 F2 A4 A3 E2 D2 B3 B2 E3 D2 A2 A3 E4 E3 C6 D7 F5 E4 C6 D5 F5 G6
D5 D4 H6 G6 D4 E4 H5 H6 F5 E4 H5 H4 F5 F4 H3 H4 H3 H2 E4 F3 G2 H2 E3 E4 G2 F1 F3 E3 F1 E1 F3 E3
D1 E1 B1 B2

3.3 Java Applet
We then feed the output mentioned above to a Java applet. This will keep track of all the moves during the
game.

Given two squares, is one/both moves possible?
If both/neither are possible, have the possibility of invoking the neural network
Else, check if it the turn of the right color and modify the state accordingly.

3.4 Convolutional Neural Network
While the CNN code has not changed greatly, we now have a larger/different data set and a lot more
categories for the neural network to classify.

Black Square
White Piece

Pawn
Rook
Knight
Bishop
Queen
King

Black Piece
Pawn
Rook
Knight
Bishop
Queen
King

White Square
White Piece

Pawn
Rook
Knight
Bishop
Queen
King

Black Piece
Pawn
Rook
Knight
Bishop
Queen
King

In []: model = Sequential()

model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1],
 border_mode='valid',
 input_shape=input_shape))
model.add(Activation('relu'))
model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1]))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=pool_size))

model.add(Flatten())
model.add(Dense(128))
model.add(Activation('relu'))
model.add(Dense(nb_classes))
model.add(Activation('softmax'))

model.compile(loss='categorical_crossentropy',
 optimizer='adadelta',
 metrics=['accuracy'])

model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch,
 verbose=1, validation_data=(X_test, Y_test))
score = model.evaluate(X_test, Y_test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])

4 Results

4.1 The Bigger Picture
The final goal is to convert a chess game to chess notation. When the first frame comes in, we split the
image into 64 squares and feed the squares to the neural network. We make guesses about what each piece
might be. If the game starts from the beginning, we can be certain about what the pieces are. However, if the
game is not from the start, our guesses about what each piece is might not be as accurate.

Once the game starts, we take in frames after every move. We compare these frames to the ones before the
move occurred and figure out what squares have changed. Once we know this, we can feed that to the
neural network again. The neural network will tell us some information about the squares. We use the
information here along with the results form the rules engine to improve our guesses about what each piece
is and to record all the moves as they happen.

So far, we have been able to:

Take in frames
Determine the location of the board
Determine square locations
Create 64 separate images, one for each square on the board

Use a neural network to determine what is in each square
Compare images before and after a move and determine what has changed
Convert a sequence of frames to chess notation

4.2 Data Set
We now have a massive data set with over 10000 images.

4.2 Comparing Images + Java Applet
Comparing images, we can determine the squares that have changed. We feed this into the neural network
to figure out what the changes are. We then use that information to improve our guesses on what each piece
is as well. The Java Applet keeps track of all the changes. When we fed our game with over 100 moves to
this system, we had perfect accuracy. All the squares were extracted properly, the changed squares were
recognized properly, and the applet was able to perfectly keep track of the game.

4.3 Convolutional Net
Here are the results from our neural network when categorizing the images based on square color, piece
color, and piece type.

The network seems to work exceedingly well with an accuracy of 0.99293785322. However, this is largely
due to the data set. Since a lot of the images in the data set were very similar, we are probably overfitting.
Even though we tried using different textures and adding variability, the images were not perfect
representaions of the real-world and so, the variance between iamges was still very small.

5 Future Work

5.1 Real Data Set and Calibration
We will need to create a realistic data set that is still large enough for training the network. Also, the images
need to be taken consistently from the same location without camera shake. For best results, the camera
must be placed exactly on top of the board and it should not move during the game. This means an
apparatus needs to be created that can hold the camera perfectly and an application needs to be developed
that will tell a user when the positioning is correct. For this technology to be truly human-friendly, it should
be integrated with a mobile application. The details of this set-up will need to be decided.

5.2 Video to Frames
When the video comes in, we need to be able to determine which squares we need to analyze. While we can
just scan every square, that would be expensive and the results might be affected by hands entering the
frame. Instead, we need to be able to identify what frames would be best to analyze.

5.3 Integrations

We need to integrate the neural network a bit more with the Java applet.

Citations
[1] G.D. Illepurema, "Using Image Processing Techniques to Automate Chess Game Recording",  Sri Lankan
Journal of Physics, Department of Physics, University of Colombo, Jan. 2011

[2] R. Fisher, S. Perkins, A. Walker and E. Wolfart, "Canny Edge Detector", Hypermedia Image Processing
Reference, Department of Artificial Intelligence, University of Edinburgh, 2003.

[3] R. Fisher, S. Perkins, A. Walker and E. Wolfart, "Hough Transform", Hypermedia Image Processing
Reference, Department of Artificial Intelligence, University of Edinburgh, 2003.

[4] "Hough Line Transform", OpenCV 2.4.13.1 documentation, 2014.

[5] http://cs231n.github.io/convolutional-networks/ (http://cs231n.github.io/convolutional-networks/)

[6] http://yann.lecun.com/exdb/mnist/ (http://yann.lecun.com/exdb/mnist/)

[7] http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/AV1011/macdonald.pdf
(http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/AV1011/macdonald.pdf)

In []:

http://cs231n.github.io/convolutional-networks/
http://yann.lecun.com/exdb/mnist/
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/AV1011/macdonald.pdf

